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Abstract--In this paper the influence of small droplets, with radius 10-Sm < r < 10 -6 m, on laminar and 
turbulent boundary layer behavior is considered. It is found that the laminar boundary layer in a two-phase 
flow with strongly dispersed liquid retains dissipation energy and that the recovery factor of enthalpy is 
greater than unity. In turbulent boundary layers small droplets are transported by turbulent diffusion and 
this leads to the recovery factor being less than unity. Its value in both cases depends mainly on the 
nondimensional number Ds= CL~L/(U2,/2). The laminar boundary layer solution for non-equilibrium 
two-phase flow is obtained. Profiles of the droplet mass fraction, vapour and droplets temperatures and 
droplet radius are computed for the case of a steady two-dimensional flow. The turbulent boundary layer is 
treated using a semi-empirical theory assuming thermodynamic equilibrium. 

1. I N T R O D U C T I O N  

The flow of wet steam in the blade passages of a turbine is associated with deposition of 
droplets on the blade surface. Any adequate theory of deposition in high-speed flow must take 
into account the behavior of the wet vapour in the boundary layer. It is known that in high 
speed flow of a perfect gas dissipation causes the temperature increase at the wall. In two-phase 
flow evaporation of droplets in the boundary layer is possible and it alters the enthalpy 
distribution across layer and the temperature achieved on an insulated wall. 

The problem is significant not only in deposition studies but also for heat transfer and 
temperature measurements. 

Experimental investigations give only limited information due to the difficulty of measure- 
ment in wet steam flows and in the thin boundary layers. With regards to these difficulties 
simple investigations of two-phase flow in Laval nozzles have been made by Stodola (1945), 
Ryley (1960), Gyarmathy & Meyer (1965), and other investigators. Classical measurements of 
parameters such as static pressure and adiabatic wall temperature were linked with the visual 
observations. The existence of a superheated sublayer on a nozzle wall or probe has been 
confirmed by Ryley (1960), Gyarmathy & Meyer (1965), Zhukousky et al. (1965) and Studzinski 
(1971). 

The first theoretical estimation of boundary layers properties in high speed two-phase flow 
was made by Ryley (1971). However, this approach takes into account only the integral 
characteristics of one-phase boundary layers and does not explain the existance of a super- 
heated layer on a nozzle wall in a wet steam flow. 

The aim of the first part of this paper is to give information about the process which leads to 
the high values of recovery factor obtained in laminar flows. Thus the emphasis has been placed 
on the qualitative aspects of the solution rather than on the prediction of an actual physical 
flow. The physics of the process is applicable also to the laminar sublayer of a turbulent 
boundary layer. The second part of this paper investigates the influence of drops on the 
recovery factor in a turbulent boundary layer. 

The steady two-dimensional two-phase flow of a compressible, viscous fluid along an 
insulated plate will be considered. Furthermore, a monodisperse droplet population with radius 
smaller than 1 tzm is assumed. For these minute droplets the Magnus, gravitational and 
centrifugal forces are negligible and the droplets can be assumed to move without slip. The 
influence of Brownian diffusion for equilibrium flow has been considered by Studzifiski (1975) 
and it was found that for droplets with radius r > 10 -9 m its significance is negligible. 
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2. GOVERNING EQUATIONS FOR LAMINAR BOUNDARY LAYER 

The laminar boundary layer consists of a dry sublayer next to the wall and a wet steam 
layer. A model with no discontinuity between the wet and dry layers will be considered. The 
governing equations were obtained by Studzifiski (1975) in the classical manner from con- 
servation equations for a multiphase mixture with m - I groups of droplets. There are three 
equations describing the mixture flow: 

Continuity equation 

a(pUx) ~ a(pU~) = 0 [1] 
ax ay 

where p=pd[l+(pdpL-1)~ Cd is the density of the two-phase mixture, U~ and Uy its 
i=2 

velocity components, C; is ith droplet group mass fraction, pc and pL are the specific densities 
of the vapour and water, respectively. 

Momentum equation 

aux .,a~, a( au~ ap pU~-ff~--t-pt& ay =~y iz-~-y / - -~  [2] 

where p is the pressure, /z is the dynamic viscosity of the mixture which for low droplet 
concentration is equal to the vapour viscosity/z ~/za. 

Energy equation 

where 

pUx ~x ( i U~2\ _ a / .  Ux2\ a [ tz aio . aUx2]2~ 
+ T ) ÷ p u L ' ÷ T ) = 7-;y * ) 

ell  

i = ~ c~ii + 

[3] 

is the mixture enthalpy per mass unit, ia = cpoTa is the vapour enthalpy per mass unit, cpo is 
the specific heat of the vapour at constant pressure, To is the vapour temperature, ii = 
cpLTu- L+(cpG- cpL)T, is the enthalpy of the ith droplet group, L is the latent heat, Tu is 
the temperature of ith droplet group, Ts is the saturation temperature and CpL is the specific 
temperature of water. 

The mass fraction if ith droplet group depends on the concentration ni per volume unit, on 
droplets radius rl and on densities p and PL: 

C = • ~ rrr/3 "Pt.. [4] 

At low pressure pdpL "~ 1 and the mixture density has the form: 

o 
P = I - CL' CL + C~ = I 

where CL = ~ C~ is the total droplet mass fraction, and Co is the vapour mass fraction. 
i = 2  
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For the dispersed phase (ith group of droplets) the governing equations are: 

Concentration equation 

O(niU,) ~_ O(niUy) = 0. [6] 
Ox Oy 

Conservation of mass or equation of droplet growth: 

U ar~ . Ür~ 2ac m r P p,(Tu) / 28 \ ]  
-~x + u y ~y = 2 : -Ctc p L x/  ( 2 ~rmk ) L (:~7~G ) - ~ e x p k ~ } j [7] 

where a~ is the condensation coefficient, k Boltzman's constant, m is the mass of a water 
molecule, R the gas constant of water yapour, p,(Tu) is the saturation pressure for temperature 
of ith droplet group and or is the surface tension. 

Conservation of energy or equation of droplet temperature: 

Ux ~TLi U ~gTu 3L 2ac m [ p p,(Tu) [ 2tr \ ]  
-'~-x + Y Or = r ~  2 =-acpLx/(2~rmk)[ ( ~ - T - ~ ) - ~ e x p ~ } J  

3(1 1 - a c  ~ (cea-R[2)m p (Tu-TG)  
- ~  + a~ a"JprCpLX/(21rmk) X/(Ta) 

[8] 

where Of a is the accomodation coefficient. 
The Hertz-Knudsen model of droplet growth proposed by Puzyrewski & Krol (1976) is 

used. The momentum equations for the drops is not used because of the zero slip assumption. 

The boundary conditions imposed on the set of equations [1]-[8] are: 

y=O Ux = Uy = 0 0ic = 0 (adiabatic wall) 
0y 

y ~ oo U~ ~ U~ ic -~ ia, ri ~ rie 
Tu -~ Tue ni ~ hie 

[9] 

where quantities with subscript e refer to the edge of the boundary layer. 
In general form there are equations for m groups of droplets. 
A model gas is chosen with the properties: 

p = pc, RTa, /~o = Ao/ZaOT~ o, Pr = 1 [10] 

where Ao is a constant, /ZGo and T~0 are dynamic viscosity and temperature for stagnation 
conditions respectively, Pr is the Prandtl number of the vapour. 

3. S I M I L A R I T Y  A N A L Y S I S  O F  B O U N D A R Y  V A L U E  P R O B L E M S  

The conditions for self-similar solutions for compressible boundary layer flows impose 
conflicting demands on the equations for mixture and droplet phase and such solutions cannot 
be obtained. 

In the case when the self-similarity requirements are not satisfied and parameters at the 
boundaries are weakly changable, the concept of local self-similarity has been applied quite 
successfully to solve the problem. These solutions show most of the characteristics of the flow 
and the influence of parameter variation on the boundary layer flow behaviour without 
introducing the complications of non-similar solutions. 
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After analysis of the governing equations with one group of drops the new independent 
transformed variables are: 

peU~ f r  Pc dy [11] 
( = %/(2AoPeUeXot.tGO~)3o PGe 

= X/Xo 

where x0 is the characteristic length of the plate. 
The new independent variable is similar to Lees (1956) variable, however the integrated 

function is not the mixture but the gas phase density. It was impossible to obtain a solution with 
the classical transformation where p is the density of mixture. 

The introduction of a stream function 

~b(x, y) = ~v/(2txooAoU, pog)K(( )  [121 

together with the definitions 

Ux(x, y) = UeO(O; r(x, y) = r,~((); Tc(x, y) = To, Ta(~'); 

T L ( X , y ) : T L e ~ L ( ~ )  ; (~_L) = (n_.~) /~(~.) e [13] 

where on the edge of boundary layer Ue, re, To,, TL~, (n/p)e are constant, leads to the 
conservation equations for locally self-similar flow in the form: 

[C~ -" g(ln ] K"+ K"[2(ln Ca)'+ K] + K' L _  + Ca)' = 0 
Co 

- i t  -- t To + K T o - Ec [3KNF2~ ' Ds - 2(K"Co + K ' C b) 2] = 0 

~ =  3Jcr_2- '  ~ ceG - R/2 3(1 + 1-~c%)ac Sd /~L-- /~O 
? CoKe CoL 2ad(2-a~) - f f ~  

/V'=0. 

[14] 

The boundary conditions now become: 

( = 0 ;  K=  0 = 0 ;  TA=0; 
¢=o~; 0--,1; ~o--, 1; ~L~l; [15] 

N--, 1; f ~ l .  

Primes are used to denote differentiation with respect to sr and other expressions are given as: 

Ct~" L + 1____ Ho 
(1 - Co,)Co + CL, CL = 1 Ds = ~ = 1 Ec 

(7,, U~12 CL = ~---~ = ~ 3  Ec = 
cp To, 

Sd = 2ac p,.  m.  xo/U, Jc = L 
2 - a~ pLrO V'(2crmkTo,) cp To, 

2a 
' r  = ps(TL)/pe exp ( ~ )  

[16] 
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where Sd is the Stodola number, Ds is a new nondimensional number, Ec is the Eckert number 
and Jc is the Jacob number. These are nondimensional numbers which characterise two-phase 
flow. The Stodola number, Sd, expresses the ratio of droplet residence time to the evaporation 
time in the boundary layer. 

The number Ds is the ratio of energy consumption on evaporation to kinetic energy. 

4. LAMINAR BOUNDARY LAYER IN THERMODYNAMIC EQUILIBRIUM 

It is possible to derive a simple integral of the energy equation for equilibrium flow. The gas 
phase temperature is equal to the droplet's temperature in the equilibrium state, TG = TL, and 
for one droplet fraction [7] has the simple form 

Or Or 
U;, ~x  + Ur~yy = O. [171 

The energy equation [3] can be rewritten as 

O / .  Ux2k a . U;, 2 0 0 . 

Noting [1], [6] and [7] the last term in [18] is zero. 

• oC~+ , oCL o n p ux " ~ -  p u y --~-y p U,, "~-~ (-~ ) a n  4 +pU,-~y(-~)+~ -- ' Or+ 

d \ p /  y k p /  P L  dX dy J 

O ( n U x )  ~. O ( n U ~ )  _ O. 
Ox Oy 

For flow with zero pressure gradient [19] is similar to momentum [2] 

..aHo+ .,aH~ a [  aHo'~ pux-- - puy 0y 

where HG = iG'+ (Ux2/2) is the gas phase total enthalpy. 
In that case it has the following solution 

From the boundary conditions 

[18] 

[19] 

y = 0; aHG = 0 
0y 

y ~ oo; Ho ~ HGe 

it follows that the constant will be equal to the total enthalpy of gas phase in the external flow 

He = Ho,. [211 

This solution is similar to the Crocco integral for dry, perfect gas flow in a laminar boundary 
layer. It must be emphasized that it holds only for (aplax) = 0 and Pr = 1. 

Ho(x, y) = const. [20] 
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The temperature profile in a two phase boundary layer on an insulated wall (Pr = 1) is coupled 
with the velocity profile Us(x, y) and the wetness fraction in the external flow Cu: 

[22] 

Temperature of the insulated wall Tw is 

Tw = (Ho + C ~  . L)/cpo. [231 

If stagnation parameters lie in the superheated steam field then the wall temperature is greater 
than stagnation temperature To 

Tw = To + C u  " L/cpa. [24] 

The recovery factor rE in general form is defined as 

iw - ie 
r~ = io - i, [25] 

where iw is the enthalpy on the insulated wall, i0 is the stagnation enthalpy and i, is the mixture 
enthalpy in external flow. 

For two-phase flow it has the form: 

C u . L  
r~ = 1 + ~ = 1 + Ds. [26] 

It will be shown that the recovery factor for equilibrium flow is greater than unity and depends 
on the nondimensional number Ds. It is well known that for dry (superheated or supersaturated) 
flow and Pr = 1, the recovery factor is unity. Assuming Cu = 0 we have r~ = 1. The radius of 
equilibrium droplets in the laminar boundary layer, from [7], is 

2O" 
r = pLL[1 - TG/T,(p,)]" [271 

The gas phase temperature TG increases towards the wall and the equilibrium droplet radius 
must increase also. It is seen from definition [4] that wetness, CL, tends to zero when the radius 
or concentration tends to zero. We conclude that in thermodynamic equilibrium the droplet 
concentration decreases in the boundary layer causing a decrease of wetness fraction. 

There are two physically possible situations. Droplets with radius r0 are "thrown into" the 
laminar boundary layer from the outer edge, further they move without slip, and are evaporated 
(see the next chapter) because their initial radius r0 is too small comparing with equilibrium 
radius r, [27]. 

In the second case droplets are nucleated within the boundary layer. The concentration 
decreases quickly towards the wall because a nucleation rate strongly depends on super- 
saturation pJps(Ta) .  Behind nucleation zero there is a thin wet layer of the equilibrium droplets 
[27]. 

It is possible to estimate the location of the interface between the wet and superheated 
layers. 

From equilibrium condition we have 

/ X 2~ 
TL = Ta = T s ( P e ) [ 1 - ' 7 7 - - ' .  [28] 

\ r L p L I  
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The temperature distribution across the boundary layer is given by [21] and for limit value r-~ oo 
we obtain the following Crocco coordinate for interface 

O~.,= X/(1-cp~(T'(#e)- T~e)) 
U212 [29] 

For example for Pe = 0.7 bar, re = 3.5.10 -s m, Ue = 700 m/s we get ~Yint = 0.9983. It is seen that 
the depth of droplet penetration in an equilibrium laminar boundary layer is negligible. There 
exists only a dry boundary layer and the solution of the momentum equation [2] does not differ 
from that for dry gas. 

5. SOLUTION PROCEDURE AND RESULTS 

The equations ([14]) developed in section 2 could be used to calculate the two point boundary 
value problem for steady, compressible, non-equilibrium two-phase flow in laminar boundary 
layer. 

The droplet growth equations are of the first order and for liquid phase there is the initial 
value problem. Strong nonlinearity of the equations for droplet growth and mixed initial- 
boundary value problem causes, that more sophisticated method like quasi-linearization or 
iteration scheme applying the principle of functional iteration, is useless. 

Employing the technique of repeated "shooting" from the inner boundary, it is necessary to 
predict initial values for radius and droplet temperature at the interface between the super- 
heated sublayer and the wet steam layer. These values are not independent and it is impossible 
to foresee correctly the droplet temperature. The solution of the governing equation is obtained 
by modifying the droplet temperature equation. It is known that the components on the 
right-hand-side have absolute values much greater than the derivative of TL. Hill (1966), in his 
work neglected this derivative and replaced the differential equations by algebraic equations. 
The assumption that the capillary effects are negligible allowed him to de-couple the equations 
of growth and of the droplet temperature but the accuracy of the solution was rather 
unsatisfactory (figures 1 and 2). 

4 
10-7 

[ I 
dd-~t= I/s;=c=OI5; i l O  ~ 1.0437~-9m Z 

/ 

E I0 -e by Hill ( / 9 y  " 

/ / ' ~ b y  author with simplification 
/ x "  TL'=O 

~,~ ~ - - / ' \  bx Puzyrewsk= a Krol09~6) 
2~ ~ / witho.t simplification 

io -9 o 5 IO 15 20 

t, F= 
Figure 1. Comparison of Hill's and Puzyrewski & Studzifiski methods of droplet growth computations. 

Computations are for constant expansion rate dp/dt. 
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Figure 2. Comparison of Hill's and Puzyrewski's and the author's methods of droplet temperature 
computations. 

It is proposed here to take into consideration the surface tension influence on pressure and 
solve simultaneously the algebraic and differential equations. 

When the gas parameters and droplet radius is given, algebraic equation exactly defines the 
droplet temperature. In this case initial values are not required. The accuracy of the proposed 
method does not differ more than 0.5% for radius and 0.01% for temperature, from the 
unsimplified solution derived by Puzyrewski & Krol (1976). 

For given boundary values on the wall, defined position of interface and small initial droplet 
radius the derivative K"(0) and concentration (n/p) on interface are obtained by means of iteration. 

The numerical calculations have been carried out with the Prandtl number of the gas phase 
equal unity for water vapour, condensation coefficient ac =0.15, accomodation coefficient 
aa = 1.0. 

Figure 3 shows nondimensional profiles of velocity 0 ,  gas phase temperature 7~0 and 
wetness fraction (~L as functions of Ds number. Its increase causes greater depth of droplet 
penetration in non-equilibrium laminar boundary layers and increases the insulated wall 
temperature. Droplet evaporation does not change the velocity profiles significantly because of 
the rather small change of viscosity. Its influence on the skin friction coefficient CI is negligible. 
There is also shown the temperature distribution TG for equilibrium flow with number 
Ds = 0.19. The insulated wall temperature T,~ in nonequilibrium flow with Ds = 0.19 is lower 
than for equilibrium and higher than for supercooled flow. 

Dissipation energy is utilised by droplet evaporation and gas temperature gradient reduc- 
tions. The heat conducted to the outer flow is reduced and this causes an increase of the wall 
temperature. 

Comparing graphs of wetness CL (figure 4) or droplet radius (figure 5) against ~r for different 
Stodola numbers it is seen that the wetness gradient depends on the droplet dispersion. For the 
same external wetness but different concentrations the more dispersed mixture retains more dis- 
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Figure 3. Figure 4. 

Figure 3. Wetness fraction, gas temperature and velocity distribution across non-equilibrium laminar 
boundary layer. 

Figure 4. Influence of liquid phase dispersion (Stodola number) on the depth of droplet penetration in 
non-equilibrium laminar boundary layer. 

3.0 

Ds=032 

0=¢ =0.15 

2.5 

Ec=0.32 Jc =1.45 

Xo=O,35m 

2.0 0 0.5 1,0 

,-7.~ 

Figure 5. Radius of droplets and their concentration distribution across non-equilibrium laminar boundary 
layer. 

sipation energy and evaporates more rapidly. The wet layer thickness is a function of Ds 
number, Stodola and Eckert numbers. 

In figure 6 profiles of droplet temperature TL and gas phase temperature To are shown. Rise 
of temperature TL appears when the flux of energy, which is transferred with evaporated 
molecules, is weaker in comparison with the conduction flux. In the outer part of the boundary 
layer the temperature TL follows To but droplet radius slowly diminishes. When the maximum 
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Figure 6. Gas phase and droplet temperature in non-equilibrium laminar boundary layer. 

of droplet temperature TL is achieved there is rapid decrease of TL connected with rapid 
droplet evaporation. 

It is convenient to introduce recovery factor of enthalpy defined by [25]. For supercooled 
flow of water vapour (Pr = 1) the recovery factor is equal to unity. Its value in equilibrium flow 
depends only on the Ds number [26] and is greater than unity. This effect is similar to the flow 
of dry gas with Prandtl number greater than unity. 

Graphs of recovery factor in a laminar boundary layer for equilibrium and nonequilibrium 
flows are shown in figure 7 plotted against the nondimensional number Ds. Nonequilibrium 
evaporation has little effect on recovery factor and its value depends only weakly on Stodola, 
Jacob and Eckert numbers. 

6. EVAPORATION OF DROPLETS IN COMPRESSIBLE TURBULENT 
BOUNDARY LAYER--EFFECT ON RECOVERY FACTOR 

Laminar boundary layer theory in compressible two-phase flow is of rather qualitative 
significance. In many practical applications the boundary layer will be turbulent. 

The influence of dissipation energy on the evaporation of small drops in a turbulent 
boundary layer is of particular interest in wet steam turbines. 

The steady two dimensional flow of a compressible viscous mixture along an insulated, flat 
plate will be considered. Small drops, 10 -8 m < r < 10 -6 m, in thermodynamic equilibrium and 
with wetness fraction C~ "~ 1 is assumed. The dispersed phase moves without slip. The 
assumption of equality of the turbulent diffusion coefficients for gas and small droplets is 
permissible as stated by Rouhianen & Stachiewicz (1970). Equality of gas and droplet tem- 
peratures allows the use of the theory of turbulent boundary layers with chemical reactions. 

The momentum and energy equations in Crocco coordinates (x, Ux) have the general form: 

u x ~ ( ~  + ~ ~ a2~ 
• 

[30] 
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Figure 7. Recovery factor of enthalpy for laminar and turbulent boundary layers in two phase flow. 

pUl~+l~rOH 01" OH 0 [ F 1 OH+~ 1 1 ]LOCL+{1 

where H=cpT-CLL+U~/2 is total mixture enthalpy, r=(l~+l~T)OUx/OY is the local 
shear stress,/~T turbulent viscosity, Prm = Pr or PrT and Scm = Sc or SCT are the molecular or 
turbulent Prandtl and Schmidt numbers respectively. 

For Prandtl's scheme of turbulent boundary layer structure it is necessary in the laminar 
sublayer to take molecular values Pr,, = Pr or Sc,, = Sc (Brownian diffusion) and in the fully 
turbulent domain Pr,, = Prr or Sc,, = SCT. 

Karman's approach allows for the third domain--the so-called buffer zone--where Prs, Scm 
have values changing between turbulent and laminar values. 

Dissipation energy causes droplet evaporation in the turbulent boundary layer. There will 
exist an interface between the superheated sublayer and the wet part of the boundary layer. 
Because of the low droplet concentration C ~  the interface position can only be in the fully 
turbulent domain or in the buffer zone and the droplet influence on the velocity profile is 
negligible. 

The main difficulty is the estimation of the turbulent Prandtl and Schmidt number dis- 
tributions across the boundary layer and the proper choice of their value in each zone. 

In the simplest case it is possible to assume, for the Prandtl scheme, constant values of 
nondimensional numbers Pr=  PrT = SCT = 1. The interface between the wet layer and the 
superheated sublayer lies in the fully turbulent domain. Solution of [30] and [31], is obvious: 

H = aUx + b [32] 

where a, b are constants. 
Using boundary conditions for an insulated wall the integral of [32] has the form: 

H = H~ [33] 
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where 
Ue 2 

He = cp~ " Te - C ~ L  + - T  = Ho. [34] 

The temperature of an insulated wall, for an external flow which stagnation parameters Po, To 
lie in the superheated field is: 

Tw = To-  CLoLIcp~ [351 

and the recovery factor 

_ i w  - ie  _ 1 .  [ 3 6 ]  
rE io- ie 

The droplet concentration distribution in the wet zone of the boundary layer has the form: 

CL = 1 - (1 - 0x2)/Ds. [37] 

Interface coordinate ([-.~x)int, in which lies the fully turbulent domain, is 

( [-~x)int = V'(1 - Ds) [381 

and the temperature distribution in the superheated sublayer has the form: 

- 2  = 1 + ( U x i,t - Ox~) • Ec = 1 + (1 - Ds - Ox 2) Ec. [39] 

These solutions are quite different in form from those for a laminar boundary layer obtained 
previously because of the turbulent diffusion of the droplets. Coefficients of momentum, 
energy and mass diffusion are equal (Pr = Prr  = Scr = 1). Thus the recovery factor is equal to 
unity. 

However, in real flows the nondimensional numbers are changing across the boundary layer 
and their average value in the turbulent zone is less than unity. 

Recovery factor computation from [30] and [31] requires information about the turbulent 
viscosity Zr in two-phase ftow and the turbulent Prandtl and Schmidt numbers. 

Van Driest (1959) solved a similar problem in a perfect gas flow with Prr, # 1 in a simpler 
way. He assumed a logarithmic velocity profile and used shear stress distributions obtained 
from measurements. The influence of compressibility was taken into account only by change in 
local skin friction coefficient. Using the local similarity concept he assumed that, in Crocco 
coordinates, the enthalpy distribution depended only on Ux. It was useful simplification for the 
case of zero pressure gradient and constant wall temperature. The problem was reduced to the 
solution of an ordinary linear, differential energy equation. 

The case of two-phase flow along flat insulated plate with the assumptions related previously 
will be treated using van Driest's approach. 

The influence of droplet concentration on the shear stress distribution is taken into account. 
Therefore the local skin friction coefficient is modified. 

For the simple Falkner law, which applies in incompressible flow 

2rw Rex_l/7 C:o = ~ = 0.0263 [4O] 

where Rex = pU, x/lz is the Reynolds number, and the reference temperature, T,,, is defined as 
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To = (7', + Tw)/2. 

From the recovery factor definition [25], the ratio T,/T, is derived: 

T.  = 1 + (re - Ds). Ec/2. 
T, 

The assumption of a linear dependence between viscosity and temperature 

#a=T. 

and the perfect gas assumption 

Pc= 1 Ta 
p. 1 - C u T ,  

allows the derivation of the skin friction coefficient, C i, in compressible, wet steam flow: 

Cf=p,---~2z" = 0.0263 (~)-1/7 , . , _ , .  (pp_~).-61,.(~__~,),t/7 
= 0.0263 Rex- v7. (1 - CLe)6/7[1 + ( r E  --  Ds)Ec/2] -Sn. 
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[41] 

[42] 

[43] 

This distribution is for incompressible flow and for compressible wet-steam flow the skin 
friction coefficient should be changed to G "  (pdp.) from expression [44]. 

Coordinates of the boundary between the laminar sublayer and the buffer zone, /,Ta = 

5X/(Cfd2), or between the buffer zone and the fully turbulent domain,/-7,r = 5(1 + In 6)X/(Cfo/2), 
will be modified in the same way. Using the local similarity concept the energy equation in 
every zone has the general form: 

/ - I " - ( W . ,  -1)/- t ' ,~ ' / .T+(W., - 1)(1 + O.~'I~)UTIH. + W'IW,.(O.U,~IH.-H')=0 [46] 

where Wm could be Pr, Prr, Sc, Scr respectivley. There is superheated steam below the 
interface and in this layer must be taken W,. =Pr  (molecular or turbulent 
respectively to the zone). The wet-steam layer is in the thermodynamic equilibrium, tem- 
perature is constant T~ = T,(pe) and conduction flux is zero. Energy transport is caused by 
droplet diffusion, therefore W,, = Sc (molecular or turbulent). In the buffer zone nondimensional 
numbers have medial values Pr-< Prb --< Prr, Sc-< SCb --< Scr. Assuming constant shear stress, 

= ~'w, in that zone 

P F T  
Prb - l]x " [471 

1 +(Pr~/Pr- 1) exp ( 1 - ~ )  

An analogous expression is derived for the Schmidt number. 

, ,  ox,[ o.,] [45] 

Van Driest's (1959) expression for shear stress distribution in a turbulent boundary layer with a 
logarithmic velocity profile has the form: 

[44] 
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There are some difficulties concerning the proper choice of turbulent Schmidt and Prandtl 
numbers. The distribution of turbulent Prandtl number across a boundary layer was in- 
vestigated by Simpson et al. (1970) who derived the formula for the outer region 

Prr = 0.95 - 0 . 4 5 ( y / 8 )  2. [48] 

where 8 is the thickness of the turbulent boundary layer. The turbulent Prandtl number in 
expression [47] is the value on the boundary of the buffer zone and the value of Prr = 0.9 is taken 
from Simpson et al. (1970) data. In the fully turbulent domain (superheated layer) [48] is applied. 

The molecular Prandtl number for water vapour is unity. The turbulent Schmidt number 
distribution was investigated by Dunbar & Squire (1971). The medial value in the fully turbulent 
zone is approximately SeT ~ 0.5 but in the buffer zone it increases, e.g. for droplets with radius 
r/> 10 -s m, to value Sc/> 1000. 

Results of recovery factor, r~z, computations are shown in figure 7. Recovery factor depends 
mainly on the nondimensional number Ds= Ct~" L/(U2[2). Dependence on Eckert's and 
Reynold's number is negligible. Increase of the parameter Ds causes decrease of the recovery 
factor. This dependence occurs when the influence of the molecular Schmidt number in the 

buffer zone is weak. 
Experimental data are taken from Studzihski (1971), (1975) measurements on an insulated 

plate aligned with the axis of a Laval nozzle. 
The results of adiabatic wall temperature measurements are similar to obtained by Ryley 

(1960) and Zhukousky et al. (1965). 
The liquid phase was nucleated during homogenous condensation. Data are measured in the 

zone downstream of the onset of condensation, near thermodynamic equilibrium. Agreement 
with semi-empirical predictions has been found to be satisfactory. 

7. C O N C L U S I O N S  

The results of the analyses of this paper can be summerized as follows: 

(1) The recovery factor of enthalpy in compressible wet vapour flow, with negligible 
Brownian diffusion, is greater than unity for laminar boundary layers and less than unity in 
turbulent boundary layers. 

(2) The recovery factor in both laminar and turbulent boundary layers depend mainly on the 
nondimensional number Ds = C ~ .  I.J(U2/2). 

(3) Dispersed droplets in compressible laminar boundary layers retain dissipation energy so 
that the insulated wall temperature can be higher than the stagnation temperature of the 
external flow. The depth of droplet penetration depends on Eckert, Ds and Stodola numbers. 
The latter expresses the influence of droplet dispersion. 

(4) Turbulent diffusion of small droplets is responsible for the thermal behaviour of the 
turbulent boundary layer. The droplets are strongly evaporated in the buffer zone and laminar 
sublayer. 
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